References

Here, you will find a list of relevant references. For a comprehensive list, please also consult bibliography of our paper and our suplementary materials.


Our Paper

If you use this package, citing our paper is highly appreciated!

Wang, K., Yang, Y., Wu, F. et al. Comparative analysis of dimension reduction methods for cytometry by time-of-flight data. Nat Commun 14, 1836 (2023).
https://doi.org/10.1038/s41467-023-37478-w

Or if you prefer BibTeX:

@article{wang2023comparative,
    title={Comparative analysis of dimension reduction methods for cytometry by time-of-flight data},
    author={Wang, Kaiwen and Yang, Yuqiu and Wu, Fangjiang and Song, Bing and Wang, Xinlei and Wang, Tao},
    journal={Nature Communications},
    volume={14},
    number={1},
    pages={1--18},
    year={2023},
    publisher={Nature Publishing Group}
}

Selected References

  • Stark, S. G. et al. SCIM: universal single-cell matching with unpaired feature sets. Bioinformatics 36, i919-i927 (2020).

  • Ha, M. K. et al. Mass Cytometry and Single-Cell RNA-seq Profiling of the Heterogeneity in Human Peripheral Blood Mononuclear Cells Interacting with Silver Nanoparticles. Small 16, e1907674 (2020).

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928-942 (2019).

  • van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 2579-2605 (2008).

  • McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv (2018) doi:10.48550/arxiv.1802.03426.

  • Amodio, M. et al. Exploring single-cell data with deep multitasking neural networks. Nat. Methods 16, 1139-1145 (2019).

  • Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).

  • Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482-1492 (2019).

  • Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).

  • Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998 (2015).

  • Chang, Q. et al. Imaging Mass Cytometry. Cytometry A 91, 160-169 (2017).

  • Abe, K., Minoura, K., Maeda, Y., Nishikawa, H. & Shimamura, T. Model-based clustering for flow and mass cytometry data with clinical information. BMC Bioinformatics 21, 393 (2020).

  • Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat. Biotechnol. 39, 156-157 (2021).

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38-44 (2018).

  • Oetjen, K. A. et al. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight 3, (2018).

  • van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15, 3221-3245 (2014).

  • Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16, 243-245 (2019).

  • Poličar, P. G., Stražar, M. & Zupan, B. openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding. BioRxiv (2019) doi:10.1101/731877.

  • Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547-554 (2019).

  • Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019).

  • Van Gassen, S. et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636-645 (2015).

  • Weber, L. M. & Robinson, M. D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89, 1084-1096 (2016).

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502 (2015).

  • Kaushik, A. et al. CyAnno: A semi-automated approach for cell type annotation of mass cytometry datasets. Bioinformatics (2021) doi:10.1093/bioinformatics/btab409.

  • Hawley, D. et al. RNA-Seq and CyTOF immuno-profiling of regenerating lacrimal glands identifies a novel subset of cells expressing muscle-related proteins. PLoS ONE 12, e0179385 (2017).

  • Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615-620 (2020).

  • Levine, J. H. et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 162, 184-197 (2015).

  • Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L. & Nolan, G. P. Automated mapping of phenotype space with single-cell data. Nat. Methods 13, 493-496 (2016).

  • Mosmann, T. R. et al. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation. Cytometry A 85, 422-433 (2014).

  • Heiser, C. N. & Lau, K. S. A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques. Cell Rep. 31, 107576 (2020).

  • Levina, E. & Bickel, P. The Earth Mover’s distance is the Mallows distance: some insights from statistics. in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001 251-256 (IEEE Comput. Soc, 2001). doi:10.1109/ICCV.2001.937632.

  • Konstorum, A., Vidal, E., Jekel, N. & Laubenbacher, R. Comparative analysis of linear and nonlinear dimension reduction techniques on mass cytometry data. BioRxiv (2018) doi:10.1101/273862.

  • Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224-227 (1979).

  • Zang, C. et al. High-dimensional genomic data bias correction and data integration using MANCIE. Nat. Commun. 7, 11305 (2016).

  • Danon, L., Díaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech. 2005, P09008-P09008 (2005).